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Abstract. Paddy rice areas in Larkana district in Sindh province, Pakistan, were mapped over
eight years. Landsat 7 ETMþ satellite imagery was classified for rice areas using training data
collected through visual interpretation and using a bagged decision tree approach. Within the rice
areas, we estimated yield for the 2013 season using regression models based on Landsat-derived
normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) values against
historic, reported yield values. The annual cropped rice area estimated from satellite imagery was
between 19% and 24% lower than the area reported by the Crop Reporting Service, Sindh. A
positive and strong relationship with coefficient of determination (R2) of 0.94 was observed
between the reported rice crop yield and NDVI at the peak of the growing season for the
years 2006 to 2013. A fair relation (R2 ¼ 0.875) between rice crop yield and RVI was observed
for the same years. A strong relationship between observed and predicted rice production with
model efficiency ¼ 0.925, mean bias error ¼ −85;016 t, and RMSE ¼ 80;726 t was obtained.
Thus, Landsat ETMþ has a high potential for estimating rice yield and production at the district
level in Pakistan and elsewhere. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.9.095986]
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1 Introduction

Rice, a major food and cash crop, is cultivated in many countries throughout the world. It is
reported that paddy rice is cultivated on about 15% of the world’s total arable land,1,2 with
an annual paddy production of about 729 million tons during 2012.3 More than three billion
people in the world use rice as their primary food source.4 In Pakistan, lowland (paddy) rice
is cultivated on an area of over 2.57 million ha,5,6 which is 10.9% of the total cultivated
area, with an annual production of 9.4 million tons paddy rice or 6.3 tons milled rice during
2012 to 20137 and 5.54 tons during 2013 to 2014.6 Pakistan occupies the 13th position in
terms of rice production worldwide, and it ranks 4th in rice export. Sindh province of
Pakistan contributes approximately 25% to the total national rice production. Larkana is one
of the main rice-cultivating districts of Sindh province, producing approximately 20% of the
total rice production of the province.

The spatial distribution of paddy fields, monitoring crop development and growth, and the
early prediction of crop yield are of great importance for planners and policy makers and for the
management of food security and water resources.8,9 Timely, accurate, and reliable information
can assist planners and decision makers in dealing with deficits or surpluses of crop production.
In Pakistan, cultivated area and crop production estimates are usually forecast using field data
collected on the ground within a village list frame sampling scheme (Pakistan Bureau of
Statistics). However, these reports are often subjective, expensive, laborious, time-consuming,
and prone to errors, which may result in poor crop area and yield estimations.10 Also, in most
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countries, data on crop area and yield arrive late to analyze, make inferences, and take appro-
priate measures for avoiding food shortages.11 Remote sensing tools are used worldwide for
identification and monitoring of agricultural crops and for forecasting of crop yields and acreage
under cultivation.12,13

Different approaches are used to predict crop yields from remotely sensed data. The most
common approach is to develop a regression model based on the direct empirical relationship
between normalized difference vegetation index (NDVI) measurements and crop yield.14–18 This
idea assumes that crop yield is directly related to spectral-vegetation indices reflecting photo-
synthetic capacity of plants and crop vigor, which is affected by a number of factors including
fertilizer, water, and pesticides.19,20 The correlation between the spectral reflectance of crops and
crop yield is widely accepted and used for crop yield predictions.15,21 However, it is still not
widely integrated into operational monitoring systems.

In order to assess the reliability and accuracy of remote sensing tools, the utility of Landsat 7
ETMþ imagery for mapping rice areas and estimating paddy rice yield for Larkana district
located in the southern Sindh province of Pakistan was tested in the present study. The objective
of this study was to classify and calculate the area under paddy rice cultivation in Larkana dis-
trict, a district of southern Sindh province of Pakistan, using Landsat ETMþ images and to
assess the feasibility of developing a crop yield model from rice crop yield and the NDVI.

2 Materials and Methods

2.1 Study Area

Larkana is a major rice-growing district in the southern Sindh province of Pakistan and was there-
fore selected for the study. It is located at 68°7’ E to 68°30’ E and 27°6’ N to 27°58’ N, with a
mean elevation of 49� 4 m above mean sea level, as shown in Fig. 1. The average maximum and
minimum temperatures are 42°C and 31°C, respectively, during the summer (Kharif) period from
June to September and 21°C and 11°C during the winter (rabi) period from November to March.
The annual precipitation in the district is approximately 130 mm, which is insufficient to meet
crop water requirements. Thus, agricultural activities depend mainly on two main irrigation

Fig. 1 Location of the study area and the crop mask for the year 2010.
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canals, the Rice canal and the Dadu canal, which pass through the district. Rice and wheat crop
rotation is common here. During the Kharif season, paddy rice is sown on more than 80%
of the agricultural lands, whereas wheat is a dominant crop during the rabi season on approx-
imately 30% of the area. Rice paddy plantation starts every year after mid-June and continues
until mid-August. Rice harvesting starts in the middle of October and continues until the end of
November.

2.2 Conventional Crop Reporting

In Sindh, the southern province of Pakistan, the first and second crop area estimates are based on
sample surveys undertaken by the statistical staff of the Provincial Crop Reporting Services
(CRS), Agriculture Department, in the months of July and September for Kharif crops and
in December and February for rabi crops. The final crop area estimates are based on a complete
enumeration (Girdawari) of all areas carried out by Patwaris (a revenue collector and small
administrative unit of the Revenue Department) twice per year. The consolidated information
is examined by a subcommittee comprised representatives of the Provincial Revenue,
Agriculture, Irrigation, and Bureau of Statistics Departments. Final estimates are approved
by the Provincial Agriculture Statistics Coordination Board and estimates are made public.
Preliminary estimates of production for all major crops are based on the subjective judgment
of the CRS staff. For final estimates, crop-cutting surveys are conducted for wheat, cotton, and
rice. Production estimates for remaining major crops are based on subjective judgment and an
opinion survey conducted by the CRS. For final estimates, crop-cutting surveys of selected fields
(about 100 samples per district) are conducted for all major crops, i.e., wheat, cotton, and rice, by
the CRS. The final estimates are checked by a subcommittee comprised of representatives from
the Provincial Department of Agriculture, Revenue, Irrigation, and Planning and Development,
and after approval from the Provincial Agriculture Statistics Coordination Board, the figures are
made public 2 to 6 months after crop harvest. Thus, remote sensing–based early estimates of
potential increase or decrease in crop yields help policy and decision makers to allow for timely
import or export of agricultural products in the country.

For this study, we obtained the historical data of the area under paddy cultivation, rice yield,
and total production for Larkana district over eight years, 2006 to 2013, from the Sindh CRS,
Department of Agriculture.

2.3 Landsat

Landsat imagery is an invaluable resource for monitoring global surface change22–24 and is a main
source of medium spatial resolution earth observations used in decision making. In the present
study, we used Landsat ETMþ imagery (WRS-2 path 152, row 41, processing level 1T) from
2006 to 2013. For each year, three images, one after sowing (last week of July), one at the seasonal
peak (last week of September), and one after harvest (last week of November) were downloaded
from the United States Geological Survey portal at Ref. 25. The total number of Landsat images
used in the study were 24 scenes for 8 years from 2006 to 2013 (Table 1). Quick looks are available
at GLOVIS.25 The digital numbers (DN) of the Landsat reflective bands were converted to top-of-
atmosphere (ToA) reflectance using the standard approach described by Chander et al.26 The
images were compared carefully with each other using visual interpretation by overlaying
bands from different dates and quickly changing back and forth. No significant deviations of
pixel locations or more than one pixel were noticed. This was deemed sufficient for between-
image comparisons. Similarly, the geolocation accuracy of the Landsat image to higher-resolution
imagery on Google Earth was assessed visually by digitizing landmarks, such as road crossings
and buildings on Google Earth, and overlaying them on the Landsat scenes. Similarly, no signifi-
cant deviations exceeding approximately one pixel were noticed.

2.4 Classification of Rice/Nonrice Areas

Rice crop masks were prepared for each year using three Landsat scenes of the same year from
the early growing season, the height of growing season, and after harvest. The classification for
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rice versus nonrice areas involved the following three steps and was carried out separately for
each year.

1. The Landsat bands 3, 4, 5, 6, and 7 of all three scenes were stacked on top of each other
and saved into a single 15-band image file.

2. Training areas for rice fields were identified using visual interpretation of the multi-
temporal Landsat imagery in combination with very high-resolution imagery from
Google Earth and, crucially, applying the local expert knowledge of the analyst,
who is producing rice himself in the study area and is very familiar with it.
Emphasis was placed on the edges of rice fields, selecting training areas of rice,
and nonrice along the field boundaries. In addition, small samples of nonrice training

Table 1 Landsat ETMþ images used in the study and their radiometric coefficients.

S. No Acquisition date Path Row DOY d

LMAX LMIN

θsB3 B4 B3 B4

1 July 15, 2006a 152 41 196 1.01646 234.40 241.10 −5.00 −5.10 64.960952

2 October 3, 2006 a 152 41 276 1.00062 234.40 241.10 −5.00 −5.10 51.716023

3 November 20, 2006a 152 41 324 0.98624 234.40 157.40 −5.00 −5.10 38.417729

4 July 18, 2007a 152 41 199 1.01629 234.40 241.10 −5.00 −5.10 64.813437

5 September 20, 2007a 152 41 263 1.00430 234.40 241.10 −5.00 −5.10 55.269170

6 November 23, 2007a 152 41 327 0.98750 234.40 241.10 −5.00 −5.10 37.813126

7 July 20, 2008a 152 41 202 1.01609 234.40 241.10 −5.00 −5.10 64.418581

8 September 22, 2008a 152 41 266 1.00346 234.40 241.10 −5.00 −5.10 54.414408

9 November 25, 2008a 152 41 329 0.98712 234.40 157.40 −5.00 −5.10 37.153097

10 July 23, 2009a 152 41 204 1.01592 234.40 157.40 −5.00 −5.10 64.510850

11 September 25, 2009a 152 41 268 1.00290 234.40 241.10 −5.00 −5.10 54.005037

12 November 19, 2009b 152 41 324 0.98809 264.00 221.00 −1.17 −1.51 38.476432

13 July 10, 2010a 152 41 191 1.01664 234.40 241.10 −5.00 −5.10 65.954912

14 September 28, 2010a 152 41 271 1.00205 234.40 241.10 −5.00 −5.10 53.580597

15 November 23, 2010b 152 41 327 0.98750 264.00 221.00 −1.17 −1.51 37.801484

16 July 13, 2011a 152 41 194 1.01655 234.40 241.10 −5.00 −5.10 66.044381

17 October 1, 2011a 152 41 274 1.00119 234.40 241.10 −5.00 −5.10 52.959430

18 November 18, 2011a 152 41 322 0.98851 234.40 157.40 −5.00 −5.10 39.371435

19 July 31, 2012a 152 41 213 1.01497 234.40 241.10 −5.00 −5.10 64.807901

20 October 3, 2012a 152 41 277 1.00033 234.40 241.10 −5.00 −5.10 52.513214

21 November 20, 012a 152 41 325 0.98789 234.40 157.40 −5.00 −5.10 38.943448

22 July 18, 2013a 152 41 199 1.01629 234.40 241.10 −5.00 −5.10 66.038216

23 September20, 2013a 152 41 263 1.00430 234.40 241.10 −5.00 −5.10 56.168672

24 November 7, 2013a 152 41 311 0.99102 234.40 241.10 −5.00 −5.10 42.320757

aLandsat 7.
bLandsat 5.
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areas of land cover types, which did not occur in the immediate vicinity of rice fields,
were digitized across the area.

3. The classification was carried out using a bagged decision tree approach.27 A decision
tree is a nonparametric, binary classifier. It is constructed by repeatedly splitting the
training data based on Landsat band values so that the homogeneity of the land
cover classes of the two new subsets resulting from each binary split is maximized.
The construction of only one decision tree can lead to overfitting of the classification
model, reducing the accuracy of the result when applying the decision tree to the entire
study area. This can be improved by calculating several decision trees, in our case a total
of seven trees, and excluding from each tree 20% of the training data selected at random
with replacement.28,29 For the final result, all seven trees are applied to the entire study
area, and for each pixel a majority vote is carried out, i.e., if four of the decision trees
indicate rice and three indicate nonrice, then the rice class is assigned as the final clas-
sification result.

Using this methodology, rice crop masks of the scenes for all eight years were prepared
and subset to Larkana district (Fig. 2) and the area under rice crop for each year was
calculated.

2.5 Calculation of Missing Data in Landsat 7 Images

The scan line corrector (SLC) in the ETMþ instrument of Landsat 7 stopped functioning on May
31, 2003, which resulted in double imaging of some areas, whereas others were not imaged at all.
The net effect of Landsat ETMþ SLC being off is missing data of approximately 22% for the
normal entire scene area.30,31 However, the stripes of missing data for the area under study
(Larkana district) amount to between 3% (5723 ha) and 5% (9540 ha). The total area is
small because the study area falls close to the center of the swath (nadir) where the miss-
ing-data stripes converge, and the amount of missing data is significantly less than the average
for the entire scene [Fig. 2(a)]. Rice area for the missing data pixels was estimated by calculating
the ratio of rice versus nonrice for the area for which Landsat data existed and applying the same
ratio to the areas of missing data.

2.6 Data Analysis

2.6.1 Conversion of Landsat Digital Numbers to Top-of-Atmosphere
Reflectance

For all Landsat bands, the DN were first converted to radiance and then to ToA reflectance using
Eqs. (1) and (2) as described by Chander et al.26 The radiometric coefficients used in this study
are given in Table 1,

EQ-TARGET;temp:intralink-;e001;116;259Lλ ¼
�
LMAXλ − LMINλ

Qcalmax −Qcalmin

�
ðQcalmax −QcalminÞ þ LMINλ; (1)

EQ-TARGET;temp:intralink-;e002;116;214ρλ ¼
πLλd2

ESUNλ cos θs
; (2)

where Lλ is the spectral radiance at the sensor’s aperture [W∕ðm2 sr μmÞ], LMINλ is the spectral
at-sensor radiance scaled to Qcalmin [W∕ðm2 sr μmÞ], LMAXλ is the spectral at-sensor radiance
scaled toQcalmax [W∕ðm2 sr μmÞ],Qcal is the quantized calibrated pixel value (DN),Qcalmin is the
minimum quantized calibrated pixel value corresponding to LMINλ (DN). It is always 1,
Qcalmax ¼ maximum quantized calibrated pixel value corresponding to LMAXλ (DN). It is
always 255, ρλ is the planetary TOA reflectance, π is the mathematical constant pi, d is the
earth–sun distance [astronomical units], ESUNλ is the mean exoatmospheric solar irradiance.
For band 3 (red), it is 1536 [W∕ðm2 sr μmÞ], and for band 4, (NIR) it is 1145 [W∕ðm2 μmÞ],
and θs is the sun elevation (deg).
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No atmospheric correction of the acquired satellite imagery was carried out because it is
unnecessary for the image classification method that we used in the present study.

2.7 Calculation of Vegetation Indices

The NDVI is sensitive to green vegetation vigor. It is calculated from the visible and near-infrared
light reflected by the target surface. The RVI is a commonly used vegetation index calculated as
the near-infrared reflectance divided by the visible red reflectance values. Landsat bands 3 and 4
converted to ToAwere used to calculate the two vegetation indices, NDVI,32 and ratio vegetation
index (RVI),33 as described in Eqs. (3) and (4). The indices were calculated for the Landsat

Fig. 2 Rice crop masks of Larkana district from 2006 to 2013. Crop mask for the years: (a) 2006,
(b) 2007, (c) 2008, (d) 2009, (e) 2010, (f) 2011, (g) 2012, (h) 2013, and (i) no data mask.
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scenes at the peak of each growing season at the end of September/beginning of October for all
pixels under rice cultivation

EQ-TARGET;temp:intralink-;e003;116;711NDVI ¼ ρnir − ρred
ρnir þ ρred

; (3)

EQ-TARGET;temp:intralink-;e004;116;674RVI ¼ ρnir
ρred

; (4)

where ρnir is the near-infrared reflectance and ρred is the red reflectance.
The NDVI and RVI for rice crop in Larkana district from 2006 to 2013 were computed and

are summarized in Table 3.

2.8 Development of the Rice Yield Model

We calculated a linear regression model based on the relationship between the rice crop yield of
Larkana district (reported by CRS, Sindh) from 2006 to 2013 and the respective NDVI and RVI
peak of the same season, approximately 60 to 70 days after sowing of crops (see Fig. 3 for time
of peak NDVI). We used NDVI 60 to 70 days after rice transplanting because this is the peak of
the rice-growing season.

We estimated the crop yield (tons/ha) for each year from NDVI using regression by adopting
the following method: for each year, we calculated a regression equation between CRS-reported
yield and NDVI (excluding the year to be predicted), then applied the regression equation to that
year. For example, for the year 2009, we used NDVI and CRS yield values from 2006, 2007,
2008, 2010, 2011, 2012, and 2013 to calculate the regression equation and applied it to the year
2009. Similarly, for the year 2011 yield estimation, the data values from 2006, 2007, 2008, 2009,
2010, 2012, and 2013 were used, and so on.

2.9 Accuracy Assessment of Rice Yield Model

The agreement between the total rice production of the district reported by CRS and the rice
production estimated from the rice yield prediction model (based on the peak NDVI and RVI of
the crop), multiplied by the area estimated from remote sensing, was quantified in terms of three
statistical indicators: the mean bias error (MBE), root mean square error (RMSE), and model
efficiency (ME). The magnitude of bias was considered a better indicator of model performance
in the comparisons. These parameters are defined as follows.35

Fig. 3 Mean normalized difference vegetation index (NDVI) (based on MODIS data) of Larkana
district from 2000 to 2014 [Source: GLAM Pakistan34].
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2.9.1 Mean bias error

An MBE indicates the potential bias (i.e., underestimation and overestimation) in the predicted
yield values. A low MBE is usually desired for a model. A positive MBE gives the average
amount of overestimation in the calculated value and vice versa. Mathematically,36

EQ-TARGET;temp:intralink-;e005;116;680MBE ¼
P

n
i¼1ðPi −OiÞ

n
; (5)

where n is the number of data points, Pi is the i’th model predicted data point, Oi is the i’th
observed data, and Ō is the mean of observed data.

2.9.2 Root mean square error

RMSE is a frequently used measure of the differences between values predicted by a model and
the values actually observed/measured. The RMSE is always positive; a zero value is considered
ideal

EQ-TARGET;temp:intralink-;e006;116;541RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðPi −OiÞ2

n
:

r
(6)

2.9.3 Model efficiency

AnME coefficient is used to evaluate the prediction potential of a model. An ME of 1 is a perfect
match of modeled data to the observed data. An efficiency of 0 shows that the model predictions
are as accurate as the mean of the observed data, whereas an efficiency less than zero occurs
when the observed mean is a better predictor than the model. Essentially, the closer the ME is to
1, the more accurate the model is36

EQ-TARGET;temp:intralink-;e007;116;398ME ¼ ½Pn
i¼1 ðOi − ŌÞ2 −P

n
i¼1 ðPi −OiÞ2�

½Pn
i¼1 ðOi − ŌÞ2� : (7)

3 Results

3.1 Estimation of Area Under Rice Cultivation

The area under rice cultivation in Larkana district from 2006 to 2013 reported by CRS and the
area calculated from the classified satellite imagery is plotted in Fig. 4. It shows that the reported
rice acreage ranged between 84,100 ha in 2010 and 98,009 ha in 2013, whereas area determined
from the classified imagery ranged from 70,819 to 75,580 ha in 2010 and 2009, respectively.
Thus, the rice-crop area determined from the classified maps is between 19% and 24% lower
than the reported area by CRS. Wardlow and Egbert37 reported that the classified cropped areas
based on MODIS satellite data were within 1% to 5% of USDA-reported crop areas for most
classes at the state level. Reasons for this discrepancy can be manifold. First of all, field-based
methods applied by crop reporters are based on field size. However, they do not account for
variability within each field. In some cases, the rice crop will have only emerged in one
part of the field, or it can be severely damaged by pest or disease. The satellite imagery
will respond to the changed surface reflectance with a reduction in the estimated area of
rice, whereas the field-based method based on field sizes does not. A second important reason
is the resolution of the satellite imagery. Edge pixels at 30-m resolution are not included in the
rice area estimate, because these pixels are not pure and including them in the training as rice
would result in a large number of misclassified pixels. A solution to this problem would be the
use of much higher resolution satellite imagery such as RapidEye (5 m) or Worldview-2 (1.84-m
multispectral). This kind of imagery, however, is not free and was not available for this study. A
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third reason is that CRS relies on farmer surveys for the area estimates instead of actual mea-
surements, which introduces an additional source of error.

The rice acreage in Larkana district reported by CRS is plotted against acreage calculated
from crop masks in Fig. 5.

A moderate linear regression equation with goodness of fit R2 ¼ 0.827 based on the clas-
sified and reported acreage was developed and is given below:

EQ-TARGET;temp:intralink-;e008;116;424Ca ¼ 2:982 × CRSa − 126;488; (8)

where Ca and CRSa are the rice acreage determined from the crop masks and reported by CRS,
respectively.

The scattering of data points in Fig. 5 can be categorized into a single point (down left) and a
points cluster (up right). The single point (outlier) might have increased the goodness of fit

Fig. 4 Area under rice cultivation in Larkana district from 2006 to 2013.

Fig. 5 Relation between the acreage under rice in Larkana district reported by CRS and deter-
mined by classified maps from 2006 to 2013.
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(R2 ¼ 0.83). To analyse the effect of the single point (outlier) on goodness of fit, it was removed
from the data. As a result, the R2 value decreased to 0.72, but it did not affect the p value. Hence,
the correlation was still positive and within a reasonable range.

3.2 Crop Yield and Total Production

The yearwise total rice production and yield of all districts of Sindh are usually published 4 to 6
months after harvest by the Department of Agriculture, Government of Sindh, Pakistan, and are
given in Table 2.

The estimated crop yield (tons/ha) of considered years was multiplied by the respective rice-
cropped area obtained from the satellite imagery to estimate total rice production of the district.
Figure 6 shows the total rice production (tons) reported by CRS and calculated after multiplying

Table 2 Year-wise rice-cropped area, yield, and total production reported by CRS as well as
cropped area and total production estimated from the Landsat imagery.

Year

Reported by CRS From satellite imagery

Area (hac)

Total
Production
(Tons)

Yield
(Tons/ha)

Estimated
Area (hac)

Estimated
Yield

(Tons/ha)

Estimated total
Production
(Tons)

2006 91,500 283,400 3.097 74,352 3.166 235,399

2007 96,200 327,900 3.409 73,820 3.356 247,740

2008 95,100 370,200 3.893 74,273 3.980 295,607

2009 97,800 383,600 3.922 75,580 3.826 289,169

2010 84,100 328,700 3.908 70,819 3.774 267,271

2011 98,000 388,400 3.963 74,289 4.137 307,334

2012 93,950 362,100 3.854 74,101 3.784 280,400

2013 98,009 322,400 3.289 75,020 3.394 254,617

Fig. 6 Rice crop production (in metric tons) of Larkana district from 2006 to 2013 reported by CRS
and calculated from satellite classified map.
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the estimated yield with area determined from imagery after classification. The figure shows that
the total rice production of the district from 2006 to 2013 based on area determined from the
satellite imagery is 17% to 24% lower than that reported by CRS. This is because the cropped
area reported by CRS is 19% to 24% higher than that obtained from satellite imagery. Hence, the
total rice production of the district calculated using the classified area is 17% to 24% lower than
that reported by CRS. This might be due to the fact that the two area estimates are derived using
entirely different methods and to a degree measure two different parameters. The field surveys
are based on area sown and use the entire area of agricultural fields, sometimes obtained through
farmer surveys rather than measurements. Thus, such surveys are said to be poor predictors in
Pakistan, where spatial variability in soil and water management practices are present. The sat-
ellite, on the other hand, sees only the areas actually covered by crop and excludes areas within
fields that did not germinate or were damaged. Furthermore, the satellite analysis uses pure pix-
els and disregards mixed pixels at the edges of agricultural fields, introducing a potential bias
toward reduced crop area.

3.3 Relationship Between Vegetation Indices and Rice Yield

The NDVI and RVI vegetation indices based on the average maximum NDVI value over all rice
area in the study area for the years 2006 to 2013 computed from Landsat imagery of the Larkana
district and acquired 60 to 70 days after rice sowing are given in Table 3.

From the mathematical point of view, both indices are functionally equivalent and contain the
same information.38 Thus, NDVI has a similar trend to that of RVI. It can be concluded that the
NDVI and RVI indices can be effective tools for monitoring the rice-cultivated area, as also
reported by Oguro et al.39

Figure 7 shows the linear relationship between average peak NDVI and rice crop yield
(2006 to 2013) reported by CRS. The plot shows a positive relationship of NDVI with
crop yield of the district. A strong relationship with a coefficient of determination (R2) of
0.94 was observed between rice crop yield (2006 to 2013) and average peak NDVI of the
respective years calculated from Landsat imagery. The following relation between NDVI
and rice crop yield was obtained

EQ-TARGET;temp:intralink-;e009;116;375Crop yield ¼ 23:641NDVI − 10:343: (9)

A fair relation (R2 ¼ 0.875) between rice crop yield reported by CRS and average RVI com-
puted from the temporal imagery of Larkana district was observed (Fig. 8), with the statistical
relation as:

Table 3 Average NDVI and RVI of rice crop from 2006 to 2013 grown in Larkana district, Sindh,
Pakistan.

S. No. Year NDVI RVI

1 2006 0.570 3.75

2 2007 0.580 4.05

3 2008 0.605 5.11

4 2009 0.600 5.10

5 2010 0.590 4.50

6 2011 0.610 6.10

7 2012 0.598 4.92

8 2013 0.580 4.00
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EQ-TARGET;temp:intralink-;e010;116;191Crop yield ¼ 0:6852RVIþ 0:4667: (10)

3.4 Accuracy Assessment of Rice Area Model

Correlation of the area under rice cultivation reported by CRS in Larkana district from 2006 to
2013 and estimated from the model [Eq. (8)] was assessed with the three statistical parameters
ME, MBE, and RMSE. The results show a strong relationship between reported and estimated
area, with ME ¼ 0.984, MBE ¼ −20;304 ha, and RMSE ¼ 20;560 ha, given in Figure 9. The
MBE statistics revealed that the area model underestimates the area under rice cultivation in the
district.

Fig. 7 Relationship between the average NDVI of the rice crop in Larkana district and the average
crop yield from 2006 to 2013. NDVI is determined from imagery of the area captured after 60 to 70
days from the sowing of crops.

Fig. 8 Relationship between average ratio vegetation index (RVI) of the rice crop in Larkana dis-
trict and the average crop yield from 2006 to 2013. RVI is determined from temporal imagery of the
area captured 60 to 70 days after sowing of crop.
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4 Discussion

In this study, we analyzed the use of Landsat 7 ETMþ satellite imagery for estimation and
monitoring of rice crop yield and production. The remote sensing methodology was trained
and calibrated against yield and production numbers reported by the Government of Sindh
Crop Reporting Service. Based on the statistical parameters MBE, RMSE, and ME and a visual
inspection of the agreement between the area reported by CRS and the remote sensing–derived
area, we conclude that the remote sensing–derived rice-cropped area can be predicted from
Landsat ETMþ data if adjusted to compensate for area underestimation. This can be accom-
plished using a regression estimator to adjust estimated to reported area. Regression estimator
adjustment for remote sensing–derived area estimates is a commonly used technique.40,41 In this
study, we used eight data points for deriving a regression equation relating Landsat-derived area
to the CRS-reported area. From a statistical point of view, this limited number of points is typ-
ically not considered enough for deriving a regression model, and is a potential limitation of the
described approach. However, using a limited number of data points under these circumstances
is not uncommon.

The satellite imagery was not atmospherically corrected, as it is unnecessary for the image
classification method used in the study. Due to cloud cover, satellite imagery was not acquired on
the same date for different years. Because there is a 10- to 15-day variation in the sowing of crops
in Larkana district, 5 to 15 days difference in acquisition of images is unlikely to impact the
results of study.

Images from the Landsat 7 ETMþ sensor are compromised by stripes of missing data result-
ing from the failed SLC. The stripes are also apparent in our study area. However, the effect is
small, because the study area falls close to the center of the scene and the proportion of missing
data is only 3% to 5%. In this analysis, we compensate for the missing data by assuming that the
proportion of rice versus nonrice is the same within the small areas that are missing as it is in the
remainder of the district. This shortcoming does not invalidate the methodology; it is rather a
deficiency of the input data and can easily be addressed in future studies by using imagery from
Landsat 8 and the Sentinel-2 satellites.

The satellite-based monitoring of rice and other crops is of prime importance in Pakistan as
well as in countries with rice cultivation and has a number of advantages compared to assess-
ments solely based on ground data collection. The Landsat satellite allows wall-to-wall coverage
of the province and includes hard-to-access areas. It is independent of challenges associated with
the use of ground-based crop reporters, including human error in field data collection and data
entry, delays in getting the data from the field to the office, logistical complications in data
collection, and delivery due to natural disasters, in particular flooding and other reasons. At

Fig. 9 Correlation of reported and predicted rice area of Larkana district, Sindh, Pakistan.
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the same time, the satellite-derived estimates also have drawbacks. This includes the underes-
timation of area as discussed earlier, the dependence on cloud-free imagery, which might not be
available for all years, and the need for remote sensing data processing and analysis by a trained
specialist. Satellite-based monitoring still requires field data and long-term, independently
derived yield and production statistics for algorithm training and calibration. It is not meant
to replace, but rather complement existing systems for the production of statistical crop esti-
mates. The main value of the new methodology comes from more timely estimates much earlier
in the growing season than what is possible with the existing ground-based system, and to pro-
vide reliable data in cases where previous systems have failed or reacted with long-delayed
responses such as in the case of natural disasters or administrative challenges with managing
and supporting large numbers of crop reporters stationed in the field.

5 Conclusions

This study investigates the use of Landsat imagery time series for rice yield and production
estimates for Pakistan using the study area in Larkana district in Sindh province as a test
case. A high correlation was observed between remote sensing–derived and reported area; how-
ever, the first systematically underestimated the latter. High correlations were also observed
between peak NDVI and reported rice yield for the years 2006 to 2013. RVI performed slightly
worse. These results show great promise for the use of remote sensing data for more timely and
efficient rice yield and production estimates, which can be calculated several months before the
official, field-based numbers are released by the provincial government. For this study, only a few
years of data were available for training and calibrating the remote sensing time series analysis.
This work will continue as more data become available. The overall importance of crop mon-
itoring in general and of more efficient satellite-based monitoring in particular is increasing every
year with the advent of severe climate change impacts expected over the coming decades and
with the increasing frequency of major floods, which are thought to be related to climate change
effects already. The importance of large-scale agricultural monitoring is also increasing due to
increasing pressure on land and water resources resulting from a quickly growing population and
from the challenge of inadequately maintained and static or contracting irrigation systems, which
are the lifeline for agricultural activities in the very arid climate of southern Pakistan.
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