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Abstract Natural and anthropogenic factors directly deter-
mine the hydromorphologic and ecologic equilibrium of
riverine environment. The present study was designed to
detect the hydromorphologic characteristics of Indus River
Estuary (IRE) usingmedium and high spatial resolutionmul-
tispectral satellite imagery along with field data. Qualitative
(visual) and quantitative (analytical) analysis was under-
taken, and accuracy of each method as well as remotely
senseddatawas assessed. Single-banddensity slicingmethod
was used for water bodies, while multiband supervised and
unsupervised classification methods were adopted for the
identification of hydromorphologic habitat along with key
ecologic features of the IRE. The analysis of satellite imagery
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showed that the shortwave infrared-2 (band 7) of Landsat-8
Operational Land Imager (OLI) sensor performed better than
its visible bands for delineating water bodies. The overall
classification accuracy was 89%. Supervised classification
with the maximum likelihood algorithm performed better for
OLI imagery (30m) than high spatial resolution RapidEye
(5m) imagery. However, unsupervised classification method
was not suitable due to the significant overlapping of inter-
and intra-class pixels. Overall, due to its adequate spectral
range Landsat OLI imagery was utilized for monitoring of
terrestrial water bodies and their morphologic features. Thus,
we recommend that selecting the spatial resolution of the
imagery should be based on the size of the objects to be
recognized.

Keywords Water bodies · Classification · River Indus ·
Density slicing

1 Introduction

The regulation of river flow and rapidly changing land
use–land cover are major determinants to the ecological
health of floodplains [1]. The agricultural productivity of
river floodplains is well established all over the world,
but contemporary climate change-induced hydrometeoro-
logical extremes are exceeding previous hydrological and
morphological anomalies. River features are a function of
hydrodynamic activities those potentially trigger the avul-
sion processes [2]. Regular monitoring plays an important
role for the sustainable management of natural resources,
but it is constrained by available time, financial and human
resources for land surveys. The advancement of remote
sensing and geographic information system (GIS) technolo-
gies has helped to address these obstacles [3–6]. Imaging
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of the land surface with passive sensors allows the detec-
tion and discrimination of ground objects based on their
molecular composition and geometrical shapes using mul-
tispectral (red, green, blue) and panchromatic (grayscale)
data. The spectral resolution has been extended with near-
infrared (NIR) and shortwave-infrared (SWIR) bands up
to the hyperspectral range. Landforms can be detected in
remotely sensed imagery and linked to groundmeasurements
for interpretation using a broad range of spectral signa-
tures [7,8].Water detection techniques have been categorized
into four major categories, namely statistical patterns based
on supervised and unsupervised image classification, linear
unmixing, single-band thresholding and spectral indices [9].
Various studies have used density slicing for the discrimina-
tion of water bodies from remotely sensed imagery [10,11].

Gilvear et al. [12] characterized the morphological land-
forms of River Tummel, Scotland, using supervised and
unsupervised classification techniques and high spatial reso-
lution imagery (<2m) for a 50-m-wide channel. Isikdogan et
al. [14] used theNormalizedDifferenceWater Index (NDWI)
for the separation of water and background features using
Landsat-8 imagery over Yangtze and Huaihe river basins in
China. The authors determined thresholds for each model at
an overall accuracy of 95% using theOtsumethod. Similarly,
[14] separated water and non-water pixels using NDWI cal-
culated from Landsat-8 imagery and subsequently extracting
the river network through the modifiedmultiscale singularity
index for the estimation of the river centerline and channel
width. In a recent study, [15] achieved anoverall agreement of
30% between water bodies over the plane and hilly Murray–
Darling basin, Australia, using Landsat-8 imagery and Open
Street Maps in conjunction with SRTM 30-m elevation data.

Khan et al. [16] used satellite imagery for the visual
interpretation of shoreline change along the coast of Sindh.
Siddiqui et al. [17] studied the spatial and temporal change
in floodplains and riverine forests in Sindh using Landsat-
5 and Landsat-7 imagery. Qamer et al. [18] characterized
the wetlands in Pakistan using object-based image analy-
sis and 0.6-m high-resolution satellite imagery. A detailed
study by [19] traced floodplain changes corresponding to
floods and their subsequent river meandering in lowlands
of the world rivers including the Indus River using mul-
tiresolution imagery. Mahar and Zaigham [20] determined
the impact of anthropogenic effects over the widening of
the lower section of the Indus River using Landsat imagery.
A comprehensive account of mangrove habitat along the
coastlines of Pakistan, India, Bangladesh and Sri Lanka was
made using supervised and unsupervised classificationmeth-
ods over Landsat ETM+ imagery [9]. These studies indicate
that Landsat imagery has been used for individual aims like
vegetation detection and floodplain tracking. The present
study assesses the usefulness of Landsat-8 OLI imagery and
determines more suitable methods for water body detection.

Furthermore, comprehensive hydromorphologic characteris-
tics of the estuarine section of the Indus River in the lowlands
of Pakistan are characterizedwith small field data in conjunc-
tion with high spatial resolution imagery from the RapidEye
sensor.

Gilvear et al. [21] argue that riverine environments can
be completely delineated and spatiotemporal changes quan-
tified by using multispectral remotely sensed imagery. Thus,
the overall purpose of this study is to evaluate: (1) the suitabil-
ity of single band andmultispectral band(s) of the OLI sensor
of Landsat-8 for water bodies detection and (2) the extraction
accuracy of river morphologic features and identification of
best-fit classification technique using an error matrix. Ulti-
mately, the present study will contribute to ongoing attempts
for the consolidation of techniques for turning imagery into
information and to the development of amore comprehensive
algorithm for the semi-automatic or automatic recognition
of river morphodynamics and subsequent thematic landform
changes.

2 Materials and Methods

2.1 Study Area

The study area is located in the terminal section of the River
Indus in Sindh Province of Pakistan. The section is about
110km downstream of Kotri Barrage, which spreads over
150km in length and 0.2–1km in width across the river
course. It traverses the Indus delta starting from Sujawal
bridge (Fig. 1), and after observing high sinuosity its mouth
opens into the Arabian Sea near Keti Bandar. An interest-
ing fact pertaining to the site selection lies in its diversified
hydraulic, geomorphologic and ecologic habitat. The river
flows of this section are a prime source of freshwater to estu-
ary as it receives very low rainfall of 150–200mm annually.
The tides along the coast of Karachi are semi-diurnal with
two highs and two lows every day but vary significantly from
each other in tidal heights during the daily tidal cycle [22].
Due to the intrusion of highly saline seawater, water quality
in this deltaic plain has been degraded and groundwater is
more or less considered as brackish.

The average annual flow of water downstream of Kotri
Barrage is approximately 180 billion m3, and the sediment
flux is 400 million tons. Ecological stresses are increasing
due to the weakening of fluvial controls and the loss of phys-
ical habitat in the result of strong tidal activities.20 During
summer, intense monsoon winds from the southwest cause
parts of the delta to be intruded by seawater. During the
winter, the winds in this area blow from the northeast side.
Relic channels, wide floodplains confinedwithin levees, river
meandering, oxbow lakes and sand bars constitute the hydro-
morphologic habitat of this site. Geologically, the area is
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Fig. 1 Location of estuarine section of the Indus River in Sindh, Pak-
istan

considered as a configuration of alluvial deposits, mainly
supporting the production ofwheat, rice and sugarcane crops.

2.2 Remotely Sensed Dataset and Preprocessing

Landsat-8 imagery with path 152 and row 43 was acquired
from USGS earth explorer (http://earthexplorer.usgs.gov).
Composite images in three colors (red, green, blue) were
individually made by stacking five bands of RapidEye and
the first seven bands of Landsat-8 OLI sensor, respectively.
Panchromatic band 8 of OLI was used to sharp the OLI
image as suggested by researchers and spatial resolution of
the composite image of Landsat-8 was increased from 30 to
15m [15]. No radiometric correctionwas applied because 3A
product of RapidEye sensor used in this study was already
ortho-rectified and radiometrically corrected (Fig. 2).

As the water level of water bodies keeps changing under
prevailing hydrometeorological conditions, it is hard to
undertake accurate ground-truthing for verification of spa-
tial extent of the water surface [23]. Therefore, a high spatial
resolution image of the RapidEye sensor (5m) along with
Google Earth was used as primary and secondary references,
respectively, for visual interpretation of results of automatic
classification process [13,24–27].

2.3 Image Processing and Analysis

Composite images were classified using ArcMap software as
follows:

Fig. 2 Workflowdiagram for detection ofwater bodies and delineation
of hydromorphologic features of study area

Single-band density slicing bifurcates the image into tar-
geted and background featured class, e.g., in this study water
and non-water, which enables to classify each pixel based on
their spectral signature. Appropriate sample size and sam-
pling scheme lead to a more accurate result of the separation
technique. In this study, the sampling size of ground-truthing
points for density slicing was 160 and was decided based on
binomial probability theory.

The maximum likelihood algorithm was used for the
supervised classification and ISO-cluster algorithm for the
unsupervised classification using ArcMap 10.3.1. For the
supervised classification, the training areas of 11 classes
(water bodies, river water, seawater, canal, sand bars, bare
soil, wet soil, levees, local settlement, agriculture and natu-
ral vegetation) were chosen through visual interpretation of
high-resolution imagery andGoogle Earth as true representa-
tionof the targeted class on the ground as described inTable 2.
Meanwhile, a stratified random sampling scheme was exer-
cised for picking up those training sites. Training areas in
density slicing of single band were established as point and
multiple polygons for each class in supervised classification.

The location of the training samples was the same for
all images. The spectral signature for each training site was
derived individually for the supervised classification of each
image. Furthermore, each image was segmented into 55
classes using unsupervised classification. Each class was
inspected visually and was grouped into 10 main land cover
classes, namely water bodies combining oxbow lakes and
lagoons, river water, seawater, canal, sand bars, bare soil,
wet soil, local settlements combining digital signature of lev-
ees, agriculture and natural vegetation. The area occupied by
each class in all images was calculated with their bounding
polygons in the respective shape file.

The classification accuracy depends considerably on the
quality and accuracyof the trainingdata. Errors in the training
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Table 1 Summary of spatial and spectral resolution of satellite imagery used in the study

Dataset Type Spectral resolution (nm) Spatial resolution (m)

Landsat-8 OLI (single tile, acquisi-
tion date 10-17-2014)

Multispectral imagery with visible,
infrared, panchromatic and thermal
bands having radiometric resolution
of 16 bits, cloud cover = 0.85

Band 1 (Coastal Aerosol) 430–450 30
Band 2 (Blue) 450–510 30

Band 3 (Green) 530–590 30

Band 4 (Red) 640–670 30

Band 5 (NIR) 850–880 30

Band 6 (SWIR1) 1570–1650 30

Band 7 (SWIR2) 2110–2290 30

Band 8 (Panchromatic) 500–680 15

RapidEye (8 tiles, acquisition date
10-28-2014)

Multispectral 3A ortho-product
with radiometric, sensor and
geometric corrections, cloud
cover = 0

Band 1 (Blue) 440–510 5
Band 2 (Green) 520–590 5

Band 3 (Red) 630–685 5

Band 4 (Red Edge) 690–730 5

Band 5 (NIR) 760–850 5

Table 2 Description of targeted classes

Superclass Class Characteristics

Water Water bodies Oxbow lakes, lagoons, relic
channel having stagnant water

River Open water stream having
freshwater

Seawater Oceanic portion having brackish
water

Canal Open water stream having
freshwater

Land Sand bars Dry sand deposited during
sediment transport

Bare soil Barren or open land without
consumptive use

Levee Earthen embankment for flood
protection

Wetland/soil Moist/saturated soil located in
low-lying area

Local settlement Particularly dense urban or rural
build-ups/homestead, also
includes masonry works and
roads

Vegetation Natural
vegetation

Area under dense/scattered
forest/grass/shrubs, etc.

Agriculture Area under cultivation of crops

data can be due to errors in geometric calculations, unsep-
arated land cover classes and incorrect labeling of training
samples [28]. Therefore, the accuracy of each classification
method was determined by selecting reference points using
a stratified random scheme over the high spatial resolution
(5m) image with the aid of Google Earth. ArcMap soft-
ware compares the classified data with reference data and
subsequently builds a confusion/error matrix. The correct-

ness of actual class is measured with producers’ accuracy.
Cohen’s kappa coefficient, K , is a discrete multivariate tech-
nique that reflects the difference between actual agreement
and the agreement expected by chance.

More generally accepted statistical and analytical tech-
niques were used over actual and reference data for calcu-
lation of producers’ accuracy, users’ accuracy, commission
and omission error [11,29]. Water area calculated with
density slicing of each band was compared with water
area extracted using Modified Normalized Difference Water
Index (MNDWI), that is:

MNDWI = (ρgreen − ρSWIR1)/(ρgreen + ρSWIR1)

where ρgreen and ρSWIR1 are top of atmospheric (TOA)
reflectance of band 3 and band 6, respectively, of Landsat-8
imagery.

Two ground-truthing visits were conducted in 2015
and 2016 during which permanent ground features were
inspected, in particular the Sujawal bridge, some lengths of
right and left bank levees, a distinguished island near the
mouth of the river, scattered chunks of mangrove/natural
vegetation in floodplains and local settlement. Handheld
GARMIN’sGPSMAP-64 devicewas used for the acquisition
of georeferenced coordinates over RapidEye fine-resolution
image of 2014.

3 Results and Discussion

3.1 Single-Band Density Slicing

Table 3 shows the spatial variation in mean pixel values of
water bodies existing in the floodplain. The spectral variation
of the water class in each spectral band could be attributed to
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Table 3 Mean pixel values of
water bodies in each band of
OLI imagery

Training site Mean pixel value

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

Oxbow 1 10388.40 9541.80 8663.60 7844.20 9345.00 7441.20 6492.40

Oxbow 2 10395.00 9681.40 9209.40 8327.40 7602.60 6689.20 6205.20

Oxbow 3 10646.80 10039.80 9772.60 8768.00 7408.60 6438.80 6006.80

Oxbow 4 10534.40 9826.00 9406.00 8209.60 7308.00 6446.00 6040.80

Oxbow 5 10625.20 10034.80 9803.60 8312.20 7061.00 6205.60 5845.80

Oxbow 6 10511.40 9818.40 9422.60 8292.80 7313.40 6473.40 6050.00

River 10846.33 10302.56 10153.33 8862.44 7415.00 6581.00 6174.67

Seawater 10869.60 10283.80 9782.80 8436.40 6506.60 5808.20 5605.40

Lagoon 1 10446.67 9772.67 9467.00 8308.33 7217.67 6271.67 5865.00

Lagoon 2 10549.67 9906.00 9557.33 8611.67 7299.67 6459.33 6049.00

Lagoon 3 10342.00 9668.00 9238.67 8076.67 7233.67 6298.33 5903.33

Lagoon 4 10317.67 9565.67 8969.34 8280.00 7079.00 6192.33 5833.33

Lagoon 5 10426.67 9656.67 9233.67 8352.67 7405.33 6518.00 6072.67

Lagoon 6 10168.00 9271.00 8319.67 7725.33 7246.33 6286.67 5878.33

St. deviation 197.84 290.88 499.17 336.53 287.79 223.67 158.94

Table 4 Distribution of water
class digital numbers among
each band of OLI imagery

Band Spectral wavelength (µm) Band range Water range

Minimum Maximum Minimum Maximum

1 0.43–0.45 9952 15,291 10,138 11, 270

2 0.45–0.51 9040 15,573 9223 10,858

3 0.53–0.59 7913 17,152 8253 10,827

4 0.64–0.67 7240 20,212 7542 9779

5 0.85–0.88 6196 24,422 6371 8500

6 1.57–1.65 5575 41,835 5720 7252

7 2.11–2.29 5424 59,162 5525 6612

different reflective responses of each water body. The stan-
dard deviation of the water class started declining as the
spectral wavelength crossed 600nm and catches its lowest
value in the shortwave infrared-2 (band 7) of OLI imagery.

Similarly, pixel range of water bodies also started squeez-
ing from the 4th band and observed the lowest range in the
7th band as presented in Table 4.

Separation results of density slicing of each band are
shown in Fig. 3. Visual inspection of these results shows that
the first four bands in the visible range overestimated water
areas, probably due to the overlapping of the large spectral
range of water class pixels with adjacent vegetation and bare
soil area pixels.

Single band of OLI sensor of Landsat-8: (A) band 1,
(B) band 2, (C) band 3, (D) band 4, (E) band 5, (F) band
6, (G) band 7 and (H) MNDWI6,3. Oxbow lakes, lagoons,
river reach and tidal channels were separated distinctly in
the infrared range with bands 5, 6 and 7, respectively. How-
ever, quantitative measures of all bands were compared with
Modified Normalized Difference Water Index, which was

calculated using bands 6 and 3 [13]. The cumulative results
of the water class in the visible range were very high, while
IR bands yielded low as shown in Fig. 4. A detailed inspec-
tion of the results revealed that three bands of the IR range
misinterpreted the reflectance of tidal waves in principle and
translated those pixels as non-water class. Similarly, tidal
creeks of the coastal belt having a maximumwidth of<50m
and canals in the upper region having a maximum width of
less than the size of a pixel could not be separated adequately
and were incorrectly attributed to the non-water class. That
is why the area classified as water was lesser and non-water
was consequently higher than that of the Modified Normal-
ized Difference Water Index in Fig. 4 [13].

Results given in Table 5 are substantiating the aforemen-
tionedfindings of visual interpretation.The commission error
of the water class is highest in the first three bands (1, 2, 3)
and as low as zero in the last three bands (5, 6, 7). The reason
behind the overestimation of thewater classwas the stretched
DN range of the visible bands (Table 4), and it led to a poor
separation and automatic account of mixed pixels of vegeta-
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Fig. 3 Density slicing for image segmentation into two major classes, water and non-water

Fig. 4 Water and non-water area in km2 depicting close suitability of
near-infrared (NIR) to shortwave-infrared (SWIR1 & SWIR2) bands
5–7

tion, bare soil and other classes as the water class. Moreover,
clips of the first seven bands shown in Fig. 5 are showing
that pixel-count histograms in the visible range are unimodal
and histograms of the infrared range aremultimodal. TheDN
distribution along the x-axis of bands 1, 2, 3 and 4 (shown
in red) is more than the remaining bands, which is why the
overlapping of mixed pixels with the water class resulted in
an overestimation [11]. Distinguished peaks and multimodal
attributes of the IR bands are adequately useful for multiclass
separation with a single band.

Similarly, at 100% water class users’ accuracy was also
verified through overall classification accuracy and kappa
coefficient of 89.38%and0.78 for bands 5 and7, respectively.
Therefore, selection of a more suitable band for water bodies
detection was difficult because of the similarity of results
between band 5 and band 7.

The performance depicted in Fig. 4 in comparison with
NDWI shows that the water class areas obtained from band
7 were somewhat better, as 229 km2 than band 5 which is
determined as 201 km2. Likewise, the pixel range for a vari-
ety of water bodies as shown in Table 4 is also confirming
the suitability of band 7 with the lowest pixel range of 1087,
whereas this range for band 5 is 2129. With highest classi-
fication accuracy, good water body area estimation, smallest
pixel range under one peak ofmultimodal histogramand low-
est corresponding errors, band 7 has offset the remaining first
six bands of OLI sensor of Landsat-8 as also demonstrated
by (42) and has proven asmore suitable single discriminating
band for detection of variety of water bodies present in this
estuarine section and adjoining coastal zone of Pakistan [41].

3.2 Multiband Classification

3.2.1 Visual Assessment

A composite color image was produced by displaying 5
bands of high-resolution RapidEye imagery at a scale of
1:12,500. In the color image, the majority of hydromorpho-
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Fig. 5 Individual histograms (black color) of the first seven bands of OLI imagery with water training pixels (red color)

logic features in the floodplain andman-made land uses were
detectable as shown in Figs. 9 and 10. All water bodies
(lagoons, oxbow lakes, and ponds detected with single-band
density slicing) were apparent with well-defined bound-
aries. Besides major stream channels with wide top-width
of >500m and major creeks of >200m, the channels and
relic channels with short top-width of <40m, tidal chan-
nels<10m,wastewater drain<15mwere easily identifiable.

Sand dunes and point bars deposited near meandering bends
and bare soil in the floodplainwere also distinguishablewith-
out any image enhancement. Agricultural fields were visible,
but the sparse vegetation was a bit hard to identify. Google
Earthwas quite helpful for the differentiation of natural vege-
tation, in particular trees and shrubs. Roads, local settlements
in the surrounding villages and towns along with patches of
bare soil were visualized without difficulty.
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Fig. 6 Visual comparison of spatial resolution using a Landsat color composite image of 30m, b panchromatic band of OLI sensor of 15m and c
RapidEye color image of 5m

The color imagery of the Landsat OLI sensor with a
medium spatial resolution of 30m at the same scale was only
useful for identifying major streams such as river, creeks and
relic channels. Water bodies like oxbow lakes, lagoons and
other water ponds were easily recognizable, but it was very
difficult to identify mixed pixels representing bare ground
and wetlands. Local settlements and roads were overlap-
ping with levee class pixels. Island and sand bars were easily
detected with this image.

The visual effect of pan-sharpening of a color composite
image with band 8 of the OLI sensor was observed, as shown
in Fig. 6. Many of the features turned visible and corners of
larger land cover classes were sharper. Major roads, levees
and clusters of local settlements were distinguished at 15m
resolution. Water channels with top-width of 12m and above
got easy recognition, but the issue ofmixedpixels of bare land
with adjacent wet soil and local settlements was persisting.
Only RapidEye image was able to detect the presence of tidal
wave propagating landwards near the mouth of the river.

3.2.2 Unsupervised Classification

The level of agreement between the classified image and
the real world is depicted with the help of an error matrix
given in Table 6, 7 and 8. The overall classification for high
spatial resolution imagery of RapidEye, medium-resolution
Landsat-8 and the pan-sharpened imagerywas 57.0, 54.9 and
55.4% and the commission error up to 54.6, 74.3 and 72.5%,
respectively. Apparently, there exists a poor discrimination
and notable overlapping between major classes like water,
soil and vegetative landscapes.

A breakdown of misclassified pixels in the error matrix
(Table 6) for high-resolution imagery is depicting that unsu-
pervised classification could not perform better in intra-class
cases. The majority of pixels of bare soil were overlapping
with local settlements, by the reason their producers’ accu-

racies were 23.5 and 35.1%, respectively, as shown in Fig. 7.
Similarly, seawater was separated at 100% producer’s accu-
racy with zero commission and omission error. But its user’s
accuracy was lower as 35.3% because fairly large propor-
tions of river pixels and water bodies were incorrectly falling
into the seawater class. The issue was verified through an
analysis of the river and water bodies class shown in Figs. 9
and 10. Performance shown in the error matrices revealed
that their producer’s accuracy was 29.4 and 52.3% at 71.0%
and 48.0% omission error, respectively. Under the superclass
of vegetation, it is observed from Figs. 9 and 10 that pix-
els of agricultural crops and natural vegetation are poorly
separated and approximately 92% pixels of natural vege-
tation were wrongly attributed as agriculture. Resultantly,
the overall poor agreement between classified and real-world
landscape was recorded because kappa, k, was also very low,
0.52.

The overall classification accuracy of unsupervised clas-
sification with medium-resolution pan-sharpened imagery
(55.4%) was slightly better than composite imagery of Land-
sat OLI sensor (54.9%) but collectively smaller than that of
high-resolution imagery of RapidEye (57.0%). Insight into
the error matrix of sharpened and non-sharpened composite
imagery of Landsat OLI sensor is shown in Tables 7 and 8.
It was ascertained that inter-class and intra-class overlap-
ping of pixels has substantially lowered the classification
accuracy of Landsat OLI imagery. In classified raster data
of the Landsat OLI sensor, water bodies were separated at
zero commission error but producer’s accuracy was 76.2%
due to the wrongful addition of 23% of pixels of river and
seawater classes as shown in Figs. 9 and 10. The pixels of
bare soil were also scattered and wrongly counted into wet
soil/wetlands, local settlement, agriculture, natural vegeta-
tion and canal classes due to which its producer’s accuracy
was 14.3 with 74.3% commission error. Similarly, pixels of
seawater, canals and bare soil were incorrectly cast into local
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Fig. 7 Visual comparison of area distribution in ten classes with
unsupervised classification using RapidEye (5m), Landsat (30m) and
Landsat (15m) pan-sharpened, respectively

settlement class and its producer’s accuracy was 35.1%. A
major proportion of natural vegetation was wrongly falling
in agriculture class due to which its producer’s accuracy was
30.8 at 80.0% commission error.

Nevertheless, the mingling of inter- and intra-class pixels
was also observed in the classified image of pan-sharpened
imagery of the OLI sensor. Quantitative analysis is under-
taken in Table 8 which exhibits that pixels of the river,
seawater and the canal class were closely overlapping with
a water bodies class which is why their producer’s accu-
racy remained 95.2, 11.8, 25.0 and 20.0%, respectively. The
majority of pixels of the local settlement class were incor-
rectly falling into the bare soil class. This classification
method was a poor separator of natural vegetation from agri-
culture, and a notable proportion of this class overlappedwith
canal and local settlements. Due to the larger overlapping of
class to class and within individual class, the reliability of
this classification method was poor with a kappa coefficient
of 0.50.

3.2.3 Supervised Classification

The raster image was classified by feeding the training sam-
ples into the maximum likelihood algorithm for supervised
classification. On the basis of training samples, area cal-
culated for each remotely sensed product is shown Fig. 8.
The area-based quantitative analysis of supervised classifica-
tion reveals that Landsat OLI imagery and its pan-sharpened
image gave pretty close results for water bodies, seawater,
sand bars, wet soil/wetland and agriculture classes. However,
the area occupied by the river and local settlement classes
was calculated higher in RapidEye imagery than both types
of Landsat OLI sensor but this proportion got reversed in the
canal, bare soil and natural vegetation classes when results
of area computation of Landsat OLI sensor were higher than
RapidEye imagery.

Fig. 8 Visual comparison of area distribution in eleven classes with
supervised classification using RapidEye (5m), Landsat (30m) and
Landsat (15m) pan-sharpened, respectively

Individual class-based accuracy is tabulated inTables 9, 10
and11.Overall classification accuracy forRapidEye,Landsat-
8 composite and Landsat-8 pan-sharpened were 79.9, 90.2
and 89.7%, respectively. RapidEye imagery performed well
for the separation of water bodies from natural vegetation
and showed better producers’ accuracy and lower omission
errors. The lowest performance of this fine-resolution prod-
uct, in terms of producer’s accuracy, was observed in local
settlements and the levee class that was 50.0 and 47.6%,
respectively. An in-depth examination of Table 6 for the rea-
sons behind the lower accuracy has exposed that supervised
classification over fine-resolution imagery could not success-
fully separate the mixed pixel of local settlements, bare soil
and levee classes, which is why a poor agreement between
real and classified points was measured as kappa, k, coeffi-
cient 0.77. Visual verification of these findings is depicted
in clip 1 (Figs. 9, 10) where right levee has clearly confused
its pixels with local settlement pixels, but water bodies, river
and natural vegetation were extracted in a satisfactory way.
However, supervised classification was successful to sepa-
rate the sand bars at 100% accuracy with zero error in all
remotely sensed images.

Furthermore, the accuracy of the pan-sharpened image
was closely equal to that of the composite image of Land-
sat OLI sensor, but the highest kappa coefficient, 0.89, was
computed for the later image because it had a lower error
in the separation of the canal, bare soil and local settle-
ment classes.Spatial Interpretation.Thevisual interpretation
of high-resolution imagery resulted in a fairly good recog-
nition of land use cover as also reported by Munechika
et al. [30]. Water bodies of all sizes and stream chan-
nels up to 10m top-width, but not lower, were detectable.
However, through automatic classification technique chan-
nels having a top-width of up to 15m were detectable but
lower than that it was not possible due to the overlapping
of water class pixels with wet soil/wetland. Similarly, the
pan-sharpened image of Landsat OLI was useful for detec-
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Fig. 9 Visual comparison of classified images of study area (shown in clip 1)

Reference Unsupervised Classification Supervised Classification
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Fig. 10 Visual comparison of classified images of study area (shown in clip 2)

tion of channels with top-width more than 20m and it was
cross-checked over incising tidal channels existing on the
right and left side of the river mouth in clip 2 of Figs. 9
and 10 [15]. On medium resolution, narrow branches of
tidal channels were misclassified due to non-dissociation of
the pixel size of 15 and 30m of the Landsat OLI sensor

[15]. Natural vegetation and agricultural fields as small as
of 10 m width, trees and shrubs along canals and main river
and even in floodplains were detected using high-resolution
imagery of the RapidEye sensor, while OLI imagery of
Landsat could not dissociate them due to the issue of pixel
size.
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It was also observed that the reliability of classification
techniques was compromised due to the pixel size in the
imagery that was not compatible with targeted ground fea-
tures and resultantly false positives occurred. A detailed
review by [8] addressed a similar issue and asserted that
pixel sizes smaller than the targeted class in the fluvial
environment can even lead to poor delimitation due to
the closed reflectance of adjacent pixels of water, sand or
vegetation [8]. Spectral Interpretation. The use of mul-
tispectral imagery enables to distinguish land features of
close spectral signatures. Narrowing the spectral bandwidth
leads to the extraction of rich information of land use on
the ground [31]. Therefore, a spectral comparison given in
Table 1 indicates that OLI imagery of Landsat-8 ranges
from 430 to 2290nm, while multispectral RapidEye imagery
ranges from 440 to 850nm. Spectral reflectance of vege-
tation in the visible range was poor, while stronger in the
infrared portion which is why three IR bands of OLI as
compared with single IR band of RapidEye resulted in a
higher classification accuracy [32]. Despite the spatial dif-
ference, the spectral resolution of the first seven bands of
the OLI sensor confirmed its suitability for detection of
river geomorphology and adjoining ecologic features were
determined [33]. The spatial trend of variation in the spec-
tral response of the water class as shown in Table 3 was
predominantly due to change in biological as well as phys-
iochemical characteristics of water and its corresponding
depth.

The significance of visual interpretation for analysis of
remotely sensed imagery prevails, and the high spatial resolu-
tion is more suitable due to improved signal-to-background-
interference ratio for detection of small targets [7]. Similarly,
visual inspection enabled to recognize the riverine features
based on their spatial arrangement and ease in translation of
its contextual information. Semi-automatic classifications’
performance using high spatial resolution was less than
medium-resolution imagery ofLandsat thatwas also reported
by various researchers [31,33–38]. Prima facie, there is the
likelihood that it occurred because of the spatial sensitivity of
high resolution toward boundaries of contagious landscapes
and poor separability due to the limited spectral range. A
detailed discussion on implications of the use of high spatial
resolution and its subsequent effects on internal variability
of homogeneous spectral footprints of land cover and an ulti-
mate decrease in classification accuracy is also reported in
different studies [39–41].

A thorough examination of classified clips of high-
resolution imagery in Figs. 9 and 10 along with Tables 6
and 9 was made in order to track the subtle differences
which revealed moist patches or shady areas along the
canal, which were confused as wet soil/wetland because
electromagnetic reflectance of moist soil reduces the spec-
tral response and becomes the same as that of wet areas,

and identical findings have been reported by Dare and Liu
et al [40,41]. Similarly, there were major intra-class mis-
classifications in the superclass land, especially sand bars,
bare land, local settlement and levees due to the contigu-
ous spectral signature. Therefore, the superclass land may
be delimited for a more distinctive separation of its subor-
dinate classes either by masking all the classes other than
land and then performing the same classification or by the
use of the thermal infrared bands 10 and 11 of Landsat-8
[42].

4 Conclusions

In the present study, the application of visual, single-band
density slicing and multispectral semi-automatic algorithms
was tested over multiple spatial resolution imageries. All
infrared bands performed considerably better in density slic-
ing than visible bands of Landsat OLI sensor. Importantly,
shortwave infrared-2 (band 7) distinguished water from non-
water pixels well with density slicing showing the highest
overall producer’s accuracy of 89% and zero commission
error but 34% commission error due to the addition of
non-water pixels (predominantly moist/wet soil and water
channels <20m top-width).

The spectral response of composite image of the Land-
sat OLI sensor proved to be a reliable mean for extraction
of riverine landforms and monitoring of its hydromorpho-
logic features in terms of sand dunes, point bars, oxbow
lakes, lagoons and relic channels along with meandering
bends of the Indus River in the deltaic plain of Pakistan.
Analytical and statistical comparisons of semi-automatic
classification techniques have substantiated that supervised
classification using the maximum likelihood algorithm is an
accepted and reliable technique for the extraction of river-
ine landforms with an overall accuracy of 90.2% and it may
be further used for temporal analysis. Results using Rapid-
Eye imagery were relatively lower which did not cast any
offset because rapidly varying water balance in the lower
oceanic portion of the study area and the subsequent sub-
mergence of mudflats caused variation in the reflectance of
bare soil adjacent to sea-intruded areas which could be an
acceptable reason. All classes of water, land and vegeta-
tion superclasses were automatically detected in compliance
with the visual interpretation of reference points with nomi-
nal inter- and intra-class overlapping. It could be maintained
that spectral resolution alongwith close similarity of acquisi-
tion time matters more than spatial resolution for delineation
of morphologic features of such estuarine reaches. Thus, it
is recommended that the optimum combination of spatial
and spectral resolutions may be formulated with a medium
and high resolution of remotely sensed data for this study
area.
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